On Information Regularization
نویسندگان
چکیده
We formulate a principle for classification with the knowledge of the marginal distribution over the data points (unlabeled data). The principle is cast in terms of Tikhonov style regularization where the regularization penalty articulates the way in which the marginal density should constrain otherwise unrestricted conditional distributions. Specifically, the regularization penalty penalizes any information introduced between the examples and labels beyond what is provided by the available labeled examples. The work extends (Szummer and Jaakkola, 2003) to multiple dimensions, providing a regularizer independent of the covering of the space used in the derivation. In addition we lay the learning theoretical framework for classification with information regularization and provide a sample complexity bound. We illustrate the regularization principle in practice by restricting the class of conditional distributions to be logistic regression models and constructing the regularization penalty from a finite set of unlabeled examples.
منابع مشابه
Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملPSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کاملروشهای تجزیه مقادیر منفرد منقطع و تیخونوف تعمیمیافته در پایدارسازی مسئله انتقال به سمت پائین
The methods applied to regularization of the ill-posed problems can be classified under “direct” and “indirect” methods. Practice has shown that the effects of different regularization techniques on an ill-posed problem are not the same, and as such each ill-posed problem requires its own investigation in order to identify its most suitable regularization method. In the geoid computations witho...
متن کاملA Mathematical Analysis of New L-curve to Estimate the Parameters of Regularization in TSVD Method
A new technique to find the optimization parameter in TSVD regularization method is based on a curve which is drawn against the residual norm [5]. Since the TSVD regularization is a method with discrete regularization parameter, then the above-mentioned curve is also discrete. In this paper we present a mathematical analysis of this curve, showing that the curve has L-shaped path very similar t...
متن کاملAutomatic estimation of regularization parameter by active constraint balancing method for 3D inversion of gravity data
Gravity data inversion is one of the important steps in the interpretation of practical gravity data. The inversion result can be obtained by minimization of the Tikhonov objective function. The determination of an optimal regularization parameter is highly important in the gravity data inversion. In this work, an attempt was made to use the active constrain balancing (ACB) method to select the...
متن کاملA note on semi-regular locales
Semi-regular locales are extensions of the classical semiregular spaces. We investigate the conditions such that semi-regularization is a functor. We also investigate the conditions such that semi-regularization is a reflection or coreflection.
متن کامل